Get fresh updates from Hortonworks by email

Once a month, receive latest insights, trends, analytics information and knowledge of Big Data.

行動喚起

始める

クラウド

スタートのご用意はできましたか?

Sandbox をダウンロード

ご質問はありませんか?

クローズクローズボタン
行動喚起

Apache Hadoop Data Warehouse Architecture for EDW Optimization

Reduce Costs by Moving Data and Processing to Hadoop®

クラウド Hortonworks はリーダーです。Forrester Wave をお読みください

レポートをダウンロード

EDW とは?

Enterprise Data Warehouse (EDW) is an organization’s central data repository that is built to support business decisions. EDW contains data related to areas that the company wants to analyze. For a manufacturer, it might be customer, product or bill of material data. EDW is built by extracting data from a number of operational systems. As the data is fed into EDW it is converted, reformatted and summarized to present a single corporate view. Data is added into the data warehouse over time in the form of snapshots and normally an enterprise data warehouse contains data spanning 5 to 10 years. A Hadoop data warehouse architecture enables deeper analytics and advanced reporting from these diverse sets of data.

EDW の最適化

典型的な EDW の問題

The Enterprise Data Warehouse has become a standard component of the corporate data architectures. However, the complexity and volume of data has posed some interesting challenges to the efficiency of existing EDW solutions.

Realizing the transformative potential of Big Data depends on the corporations’ ability to manage complexity while leveraging data sources of all types such as social, web, IoT and more. The integration of new data sources into the existing EDW system will empower corporations more and deeper analytics and insights. More importantly, EDW optimization using Hadoop provides a highly cost-efficient environment with optimal performance, scalability and flexibility.

ソリューションの要素

Hortonworks Data Platform

*

Powerful open Hadoop data warehouse architecture with capabilities for data governance and integration, data management, data access, security and operations—designed for deep integration with your existing data center technology. Learn More

Syncsort

*

EDW offload to Hadoop - High-performance ETL software to access and easily onboard traditional enterprise data to HDP. Learn More
 
 

プロフェッショナルサービス

*

専門的なガイダンスとサポートにより、新しいアーキテクチャの価値を素早く証明し、完全試験済み・検証済みの Hortonworks データアーキテクチャ最適化ソリューションの価値を最大化します。詳細はこちら

EDW optimization with Apache Hadoop ®

柔軟

*

Data can be loaded in HDP without having a data model in place

*

データに対する質問に基づきデータモデルを適用(スキーマオンリード)

*

HDP はユーザーが考えた質問に答えるよう設計されている

効率的

*

粒度の細かい分析で、データを 100% 利用可能

*

HDP は構造化、非構造化の両タイプのデータを格納、分析可能

*

多様なユースケースをサポートするために、データは異なる方法で分析可能

優れた費用対効果

*

HDP(Hortonworks Data Platform)は 100% オープン - ソフトウェアのライセンス料は不要

*

HDP はコモディティハードウェア上で動作

*

HDP に新しいデータを入れて数日内、あるいは数時間内に利用可能

EDW の最適化に関するユースケース

ユースケース 1
メディアの画像

Hadoop で迅速な BI を実現

迅速な BI と深く細かい分析のために専用の EDW システムが採用されましたが、EDW は価格が極端に高い上に、これらのシステムはモダンビッグデータが抱える非構造化データや大規模スケール分析などの課題に適応していません。

Hortonworks は、データマートを構築する高速 SQL インメモリエンジンと、大規模データセットのクエリを数秒で行える OLAP キューブエンジンを採用し、Hadoop 上で迅速な BI を実現しています。これにより、あらかじめ集積されたデータに対するクエリを最大限のパフォーマンスのために実行するのか、あるいは詳細を必要とする場合に高忠実度を維持して実行するのかを選択することができ、ODBC、JDBC、MDX をサポートするすべての主要な BI ツールからアクセスが可能です。

詳細はこちら

ユースケース 2
メディアの画像

ETL 処理を Hadoop に移植

A typical EDW spends between 45 to 65 percent of its CPU cycles on ETL processing.These lower-value ETL jobs compete for resources with more business-critical workloads and can cause SLA misses. Hadoop can EDW offload these ETL jobs with minimal porting effort and at substantially lower cost, saving money and freeing up capacity on your EDW for higher-value analytical workloads. Hortonworks makes it easy by providing high-performance ETL tools, a powerful SQL engine and integration with all major BI vendors.

詳細はこちら

ユースケース 3
メディアの画像

Hadoop でデータをアーカイブ

データ量とコスト圧力の増大により、多くの企業は古いデータのアーカイブをテープに保存せざるを得ない状況です。テープストレージは分析不可能で、読み出しに高い費用がかかります。

A Hadoop data warehouse architecture offers cost per terabyte on par with tape backup solutions. Because of the appealing cost, you can store years of data rather than months. All of your enterprise data remains available for retrieval, query and deep analytics with the same tools you use on existing EDW systems.

詳細はこちら