Hortonworks から最新情報をメールで受け取る

Once a month, receive latest insights, trends, analytics information and knowledge of Big Data.





Sandbox をダウンロード



新世代の Hadoop

クラウド ホワイトペーパー:Apache Hadoop の優れたセキュリティおよびデータガバナンス


Apache Atlas と Apache Ranger の統合は、分類ベースのセキュリティポリシーを強化します

As organizations pursue Hadoop initiatives to capture new opportunities for data-driven insights, data governance and data security requirements can pose a key challenge. Hortonworks created an Apache Hadoop Data Governance Initiative to address the need for open source governance solution to manage data classification, data lineage, security and data lifecycle management.

効果的なデータ管理と制御とは、受動的であったり単にフォレンジックな対応をするだけではありません。一貫性のあるデータ分類により強化された集中型アクセス制御は、動的セキュリティの基盤となり、オープンなエンタープライズ Hadoop のためのコア要件となります。Hortonworks はこの目標を達成するため、Apache Atlas と Apache Ranger に関する新たなパブリックプレビュー機能のリリースを発表し、データ分類をセキュリティポリシーの施行とまとめしました。

Apache Atlas, created as part of the Hadoop data governance initiative, empowers organizations to apply consistent data classification across the data ecosystem. Apache Ranger provides centralized security administration for Hadoop. By integrating Atlas with Ranger, Hortonworks empowers enterprises to institute dynamic access policies at run time that proactively prevents violations from occurring.

The Atlas/ Ranger integration represents a paradigm shift for big data governance and data security in Apache Hadoop. By integrating Atlas with Ranger enterprises can now implement dynamic classification-based security policies, in addition to role-based security. Ranger’s centralized platform empowers data administrators to define security policy based on Atlas metadata tags or attributes and apply this policy in real-time to the entire hierarchy of data assets including databases, tables and columns.

Hortonworks empowers data managers to ensure the transparency, reproducibility, auditability and consistency of the Data Lake and the assets it contains. Apache Atlas now provides the ability to visualize cross-component lineage, delivering a complete view of data movement across a number of analytic engines such as Apache Storm, Kafka, Falcon and Hive. Hadoop operations, stewards, operations, and compliance personnel now have the ability to visualize a data set’s lineage and then drill down into operational, security and provenance-related details. As this tracking is done at the platform level, any application that uses multiple engines will be natively tracked. This allows for extended visibility beyond a single application view.